
The design and implementation of the A2QM3 System

Balázs Csizmazia
University Klagenfurt, Austria

csb@itec.uni-klu.ac.at

Hermann Hellwagner
University Klagenfurt, Austria
hellwagn@itec.uni-klu.ac.at

Abstract

In this paper we present the design, architecture and im-
plementation of the A2QM3 System. It provides program-
mers re-usable QoS-aware Control Objects to enable build-
ing a complete middleware for adaptive applications over
active networks. We introduce the programming model, the
system architecture, and show the parts that make this sys-
tem a full-featured middleware supporting QoS-aware re-
liable stream-oriented communication, communication us-
ing the request/reply-based CORBA model and real-time
streaming for continuous multimedia contents.

1. Introduction

This paper presents the design and implementation of the
A2QM3 (Active Adaptive QoS-aware Multimedia Middle-
ware) System developed at the University Klagenfurt.

A2QM3 supports adaptive transfer of discrete and con-
tinuous multimedia data allowing the system designer to
build QoS-based multimedia protocol frameworks from
pre-defined and user-defined QoS-aware service objects.
The whole system is supported by the ANTS active network
system described in [13].

The system is destined to eventually support quality-
adaptive MPEG-4 video transport over networks where ac-
tive network nodes (routers and proxies) change video flows
during transport in that they perform media scaling (and
thus, quality variation) operations when required. Exam-
ples of such cases are: fluctuating network QoS, in particu-
lar congestion situations; delivery of video flows along het-
erogeneous network paths or to end systems with different
playout capabilities; and multicast transfers. The network is
best positioned to quickly and gracefully react to such situa-
tions by adapting the transported media data or giving hints
to the application to adapt the streamed media data.

The architectural elements of the system were first pre-
sented at the DMMOS’01 Workshop held together with
ECOOP 2001 in Budapest [4]. The lessons learned there
led us to the current state of the system. Although the sys-

tem itself is supported by an active network based infras-
tructure, the system can be easily adapted to any datagram-
based network, like IP. The first version of the middleware
– it didn’t support any QoS-aware features – was developed
for use with UDP/IP because of its simplicity. Afterwards
it was moved to the ANTS system to allow a broader range
of experiments with it.

Our current tests are running on the institute’s parallel
laboratory consisting of 6 Pentium II clones with 450 MHz
CPUs connected by a switched 100 Mbps Ethernet LAN,
with a simple media server and 3-4 clients. Our former ex-
periments concentrated on implementing reliable multicast
protocols to efficiently transfer multimedia data; the results
were promising but the protocol used could be tested only
on our local network testbed. Experiences in [7] showed
that the chosen approach of using delayed acknowledg-
ments with retransmission does not scale well even if us-
ing some performance-improvement attempts when the un-
derlying multicast group management does not scale effi-
ciently. Active networks enable us to replace parts of pro-
tocols that were designed based on the end-to-end approach
of systems design by new parts based on the hop-by-hop
approach (quite rare in the IP world). This problem is still a
panacea for researchers to find a proper, well-scalable solu-
tion1.

With the A2QM3 System, we are building an active net-
work based infrastructure with pluggable, serializable and
portable Java-based protocol objects supported by a scal-
able host and network monitoring layer. In this way, we
extend the best-effort services provided by the ANTS ac-
tive network system to provide QoS guarantees for adaptive
multimedia streaming. Our work focuses on multimedia
streaming, the protocol framework is general enough to sup-
port a broader range of middleware systems (like systems
based on the request-reply paradigm, e.g. CORBA, or trans-
actional middleware systems by treating fault-tolerance just
as another QoS dimension). There are many research

1The advantage is that multimedia data does not need reliable multi-
casting when using the RTP protocol for data transfer. Like on a UDP/IP
basis, RTP does not need a reliable multicast as a basis. Reliability is only
necessary for RTCP, but not in a multicast fashion.

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

groups working on active network based middleware. By
our approach, using the pluggable protocol framework, we
provide a solid foundation for integrating a broader range of
middleware systems, existing already over traditional best-
effort ”passive” networks, into active network based soft-
ware infrastructures. Even more, we allow applications to
use the best of both network phylisophies; we are not just
porting existing middleware systems onto active networks.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the key components of the A2QM3 sys-
tem. Section 3 gives a brief overview of the implementation
details and the use of the system. Section 4 describes the
way we support QoS in the architecture both at the network
level and the host level. Section 5 introduces the proposed
internal architecture of the network monitor layer, responsi-
ble for the QoS awareness of the system. Section 6 presents
related research in this field. Section 7 and 8 discuss how
we plan to make A2QM3 to be a QoS-aware universal mid-
dleware over best-effort networks.

2. Key components of the system

Our solution is a protocol composition framework where
QoS management is implemented in a QoS support layer.
Atop this layer, protocol and control objects can use its ser-
vices to achieve the data transfer quality they need. In the
system, programs can re-use predefined (system-defined)
service components and programmers can extend the sys-
tem with new service objects they need. Thus, protocol
stacks can be built from the defined service components,
like network protocol stacks at lower layers.

The key components of the system are the ANTS layer
[13], an object-based active network infrastructure that sits
below the layer supporting various QoS policies, the net-
work load monitoring layer (NLML). This layer provides
the necessary information and control mechanisms with re-
spect to QoS for the protocol and service components of the
upper layers (we will show more details about it in section
5). Other important components of the system are the active
routers, involved in multicast data delivery, media stream
filtering, or caching. The components are connected by
well-defined interfaces (each multimedia device has to ad-
here to these interfaces), with standardized up- and down-
stream interfaces between the components and additional
extra interfaces between the QoS-aware protocol compo-
nents and the NLM layer. Besides modularity, the design
builds on the portability of Java as the implementation lan-
guage. Today’s Java compiling techniques (like just-in-time
compiling) provide the necessary performance for these ap-
plications.

Figure 1 illustrates a possible protocol stack for transmit-
ting MPEG-4 multimedia streams. The protocol stack con-
figuration presented there is just an example, how a multi-

MPEG−4 Decoder

Multicast data Multicast data

layer
Datagram protocol

Packetizer

MPEG−4 Encoder

FIFO protocol object

delivery object delivery object

Scalable cont. media stream

Elementary streams

 ACTIVE NETWORK LAYER (ANTS)

 NETWORK LOAD MONITORING LAYER (NLML)

PAR protocol object PAR protocol object

Figure 1. Proposed protocol architecture

media stream generated by an MPEG-4 codec can be trans-
ferred over the network without losing packets in the net-
work. The multimedia stream generated by the MPEG-4
encoder is packetized and sent to the client. The reliability
of this transfer is achieved by the use of positive acknowl-
edgment with retransmission (PAR) of lost packets. A simi-
lar configuration and its implementation in Java is shown in
section 3. The figure is for illustrational purposes only with
easy to understand concepts behind it. It does not mean that
we intend to stream multimedia data with positive acknowl-
edgment protocols. First, it is unnecessary because the de-
coders can tolerate packet losses. Second, it is not scalable
at all.

The NLML itself is only partially implemented: global
information such as network load saturation and congestion
status in remote regions is not available in the current imple-
mentation. The interfaces are defined by which applications
can receive information about the local network node like
CPU utilization, total and available network throughput, to-
tal and available memory. The global information – eventu-
ally an ANTS-based service – collects and distributes infor-
mation acquired locally. To do so, it is necessary to maintain
a connectivity graph of the hosts participating in the active
network environment. To make the system scalable we also
need an intermediate grouping mechanism allowing regions
of nodes to be treated as a single unit with respect to net-
work and host quality parameters (the quality parameters of
the regions may be characterized by calculating values from
the region’s local hosts’ performance parameters). Active
networks can be used to collect and carry local information
to the distributed information service for further processing
and make available for clients in a well-defined manner (for
example in a CORBA Trader built upon an ORB equipped
with the ability to communicate over ANTS2).

2While it is not implemented, a simple piece of software is enough

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

Finally, we do not want to re-invent the wheel for manip-
ulating multimedia streams. At the client and server nodes
we use the Java Multimedia Framework [5] which provides
a set of easy-to-use APIs for manipulating and streaming
multimedia. The JMF RTP API allows us to work with
real-time streaming. Aside the original goals of RTCP –
a part of the RTP protocol suite [12] – RTCP packets are
good candidates to collect multimedia-specific real-time in-
formation from the packets transmitted in ANTS capsules
with a specific ANTS protocol handler code; see section 5
about monitoring information we intend to use.

3. Implementation of the components

All components described here are implemented in Java.
The heart of the protocol stack implementation is the

Protocol Object. Every protocol object has a configuration
information: references to the protocol objects atop and be-
low it and a reference to the containing protocol stack in-
stance. Additionally, there are push methods available for
the protocol objects atop/below it to call when a protocol
data unit arrives. Also an event-monitoring method is avail-
able to get the necessary information from the NLML (the
NLML can also be actively monitored, a callback interface
is provided for convenience). This is a very simplistic ap-
proach to define a protocol object: a protocol object (for
example one on the server side providing Positive Acknowl-
edged delivery of packets) contains a queue of – out of or-
der – arrived but not yet delivered packets (a window) and a
thread of control allowing asynchronous processing of pro-
tocol data arrived.

Programmers rarely instantiate a protocol object. Instead
they instantiate protocols stacks. A Protocol Stack is an-
other central abstraction: it allows the programmer to spec-
ify protocol instances by means of their names and required
QoS-parameters.

A Positive Acknowledgment object contains a cache of
packets sent on the server side. It stores packets until they
are acknowledged by the client side PAR (positive acknowl-
edgment with retransmission) object (an own thread of con-
trol is used to maintain a retransmission timer). A FIFO
object is used to give each packet a unique packet number
enabling an ordered delivery of packets at the receiver side.

We emphasize that the most important part of the sys-
tem with respect to QoS is the network load monitor. All

because of the fact that ANTS is entirely written in Java and Java is IIOP-
enabled: the collected information can be stored in a CORBA Trader [8]
using IIOP. This enables a quick integration to the Adaptive Multimedia
Server’s supporting infrastructure developed at the University Klagenfurt.
The Adaptive Multimedia Server needs to know where it is worth to allo-
cate new network nodes in the system to make the streaming as efficient as
possible. The communication with the servers’s supporting mobile agent
is done via a CORBA trader.

of the above mentioned components can be implemented –
without QoS support – both over IP and ANTS datagrams.

At the lowest layer of a stack is a protocol object interfac-
ing with the network. Now we support UDP/IP and ANTS
as a datagram layer, the bottommost object in a protocol
stack.

The following code fragment illustrates the use of the
concepts in practice:

import java.util.Hashtable;
import java.io.Serializable;
import a2qm3.*;

public class SimpleDemo {

public static void main (String[] args)
{
ProtocolStack s = new Stack
("FRAGMENT(size=512):FIFO:"
+"PAR(buffer=64):"
+"UNRELIABLE(reliability=30):"
+"ANTSDATAGRAM(capsuleclass="
+"ants.Capsule)");

PARReceiver r = new PARReceiver ();
// attach to default interface:
s.registerReceiver (r);
// attach to NLML:
s.registerQoSListener (r);

while (true) {
try {

Message m;
ByteArrayOutputStream barr=

new ByteArrayOutputStream(200);
DataOutputStream dos=

new DataOutputStream(barr);
// write some user data
dos.writeByte(c);
dos.writeLong(position);
dos.writeLong(filesize_initially);
dos.write(file_data);
dos.flush();
barr.flush();
m.setContent(barr.toByteArray());
m.send(s);

} catch (Exception e) {
System.err.println ("Send failed:"

+e.toString());
}

} // end while
} // end main

} // end class

class PARReceiver
implements MessageReceiver,

QoSListener
{
public void processMessage (Message m)

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

// from MessageReceiver
{
// Processing of received
// packet goes here
System.err.println ("Got message from "

+p.getSender ());
}

public void qosViolation(QoSEvent e)
// from QoSListener

{
// QoS-violation processing
// code goes here

}
}

The above code-fragment instantiates a protocol stack
that fragments the stream sent through it with a maximum
payload fragment size of 512 bytes. Below this, there are
the FIFO and PAR protocol objects. The UNRELIABLE
protocol object simulates a lossy network: the given per-
centage of packets are lost or duplicated so that we can test
how our protocol behaves over lossy networks.

Afterwards, we instantiate a PARReceiver object and
register it with the local NLML for packet listening and lis-
tening to QoS-related events. The PARReceiver class
implements the MessageReceiver and QoSListener
interfaces for receiving packets on the registered proto-
col stacks and receiving QoS notification events from the
NLML layer. The MessageReceiver interface defines
the processMessage() method. This method will be
called on the receipt of user data giving the user data as
a parameter. The QoSListener interface defines the
qosViolation() method. Applications register this
method so that the NLML can notify them about violating
the QoS contract between the application and the NLML. It
is up to the application how it deals with these events.

Sending data can be done simply by the message’s
send()method giving it the reference to the stack we want
to use for sending data.

4. QoS support by the protocol architecture

The protocol stacks - they are protocol objects, too, so
they allow building of nested protocol objects - forward
messages upwards or downwards on client or server nodes.
Messages are extended by a message ID that identifies the
type of the message (e.g. user data, high priority user data,
acknowledgment messages or subscription messages to a
given multicast group). User data is normally sent over the
network to its destination, whether or not it contains high
priority information. Administrative messages, like sub-
scription to a multicast group is not sent over the network.
These messages trigger protocol-specific operations at pro-

Admission control module

Per stream QoS table

Stream
ID

Granted QoS
rangeQoS

...

QoS controller

QoS
monitoring
module

RTCP
reports

JVMPI
statistics

system load
information
via JNI

Network
status

QoS manager

Notify
QoS change
observers

current
system
statusper−flow QoS

 infos
control
QoS

Figure 2. Structure of the NLML

tocol objects below the sending object; it is up to the proto-
col implementation to process these messages, like building
a multicast distribution tree.

It is up to the lowest layer protocol object whether or not
it sends message type IDs to the peer.

The use of typed messages enables us to provide multiple
queues to send low- and high-priority user data in indepen-
dent message queues thus supporting QoS implementation
at the protocol object implementation level.

Protocol stacks can be installed as ANTS extensions on
any intermediate node thus allowing intermediate nodes to
process messages traveling through them not only on a per-
packet basis but depending on the user data in a given
context (examples are caching on active network nodes
or stream content transcoding). With ANTS extensions it
is also possible to intercept non-active network traffic for
any purpose, for example to support adaptation of RTP/IP
streams sent over a hybrid ANTS/IP network or use infor-
mation sent in RTCP packet flows unaware of active net-
work technology.

The use of typed messages with separate message queues
for high priority messages supports the QoS-awareness in
the implementation of the protocol objects. The distributed
QoS support is based on the information collected and dis-
tributed by the NLML presented in section 5.

5. Architecture of the NLML

The NLML contains many parts that are here described
briefly.

Figure 2 illustrates the main components of the NLML.
The QoS monitoring module collects information on the

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

status of the resources on the local network node. It can
extract information from RTCP sender/receiver reports to
get a picture about the media presentation quality. These
packets contain information about the sender’s RTP times-
tamps, the number of packets and bytes already transmit-
ted. The receiver’s statistics about the highest packet num-
ber received, inter-arrival jitter and packet loss ratio is in
the RTCP receiver report packets. It uses the Java Virtual
Machine Profiler Interface [6] to collect status indicators
describing resource allocation statistics for a Java thread.
Performance indicators at the operating system level are ac-
cessed on ANTS nodes with a special extension installed on
the specific node using the Java Native Interface.

The admission control module is responsible for main-
taining information about all streams currently served. The
information stored contains a flow ID and the requested and
admitted QoS requirements for a specific flow. This module
decides whether a new stream can be admitted. Its decision
is based on the QoS provided for other, already admitted
streams and the information collected by the QoS monitor-
ing module.

The QoS manager module is responsible for adapting
provided QoS guarantees for an admitted stream according
to the stream’s requirements (required QoS range) and the
current system load.

The QoS controller is responsible for detecting QoS-
agreement violations and notifying the registered compo-
nents in such situations.

The design of the NLML is scalable because of its
management-domain based architecture. Domains, typi-
cally a set of active nodes in a LAN, work with com-
mon QoS-management policies. Management information
is collected within a domain by active nodes and they are
exchanged between domains to enable inter-domain QoS-
management. The architecture is modeled after the IntServ
[3] and DiffServ [2] model of the IETF. Although ANTS
does not support separately managed domains (it knows the
whole network), in a test environment we can separate do-
mains by the use of multiple ANTS networks connected by
tunneling packets between networks.

6. Related work

Similar research is going on at BBN in the QuO frame-
work [11]. This work does not address the features pro-
vided by Active Networks and the current aim is to support
IIOP/CORBA-based applications, although a new applica-
tion area, multimedia systems, are being incorporated into
the system [10]. They hide the QoS monitoring function-
alities from the programmer. Our solution is independent
of the underlying network layer, but enables to use active
network technology efficiently and allows programmers to
customize their solutions at the deepest level.

A similar research is going on at the UCLA in the
PANDA project. PANDA is a middleware support system
for active networks that allows both aware and unaware
applications to benefit from better adaptability and perfor-
mance of active networks (see [1] for more details). The
PANDA project addresses security issues in active networks
together with selected Artificial Intelligence algorithms to
provide good data transfer and network resource use [9]. In
our project we do not address security issues and support of
active network unaware applications is only an option. Our
main goal is to support multimedia content streaming.

7. Future work

Up to now we have seen many parts of an active middle-
ware. Some parts are already ready to use, other parts are
being developed.

We have discussed the following components in the pa-
per which represent the main middleware support part of the
A2QM3 system:

� A ”common” protocol stack framework letting the pro-
grammer specify QoS-constraints and capabilities and
providing a simple and uniform messaging and data
transport interface to the application.

� A network load monitor layer augmenting the protocol
stack implementation. It enables building QoS-aware
protocol objects by means of providing them the static
and dynamic system parameters they need and a call-
back interface for event notification.

The following components were mentioned in the paper
as a part of the protocol infrastructure:

� A FIFO-ordered reliable data transfer protocol is al-
ready up and running. This is already in use to transfer
still images and, when necessary, adapting them in the
active network nodes during transmission. This proto-
col works with positive acknowledgments.

� A JMF/RTP socket adapter implementation for use
with ANTS. This is still under development. Our
goal is to get the necessary know-how from both the
ANTS’s point of view and JMF’s point of view about
how to extend JMF and how JMF does perform over
ANTS. Here, a simple video chat application is under
development that can run both over ANTS and UDP/IP
under RTP. We use H.263/RTP for video coding and
GSM/RTP for audio.

We plan an extension to a freely available CORBA ORB
using an active network interoperability protocol (AN-

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

IOP) instead of the TCP/IP-based IIOP. ORBacus3 or the
OpenORB4 are good candidates for these experiments.

8. Conclusions

The components introduced in this paper will be in-
tegrated into one ”universal” QoS-aware middleware, the
A2QM3. The protocol stack and the NLML implementa-
tion will serve as the basis for QoS-aware protocol stacks.
The JMF/RTP and CORBA/ANIOP solutions will be inte-
grated into the system by replacing the intermediate proto-
col adapters with active network based ones from the ”com-
mon” protocol stack framework. The mentioned projects
serve also a good way to learn more about the QoS require-
ments and QoS tolerance of real-world applications and for
making further research on application-specific topics like
a bypass mechanism for CORBA messaging where a sep-
arate QoS-layer might be unnecessary under certain condi-
tions. This is possible because CORBA messaging already
provides some kind of QoS.

Although CORBA is based on the request-reply commu-
nication paradigm, a unification of the distributed object’s
world with the multimedia streaming world is foreseeable
by treating multimedia objects such that their content is ac-
cessed using RTP and the state of the object (i.e. the con-
tent) changes rapidly over time.

References

[1] The PANDA Project Home Page.
http://lasr.cs.ucla.edu/panda/welcome.html.

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An Architecture for Differentiated Services (RFC
2475), Dec. 1998.

[3] R. Braden, D. Clark, and S. Shenker. Integrated Services in
the Internet Architecture (RFC 1633), June 1994.

[4] B. Csizmazia and H. Hellwagner. Proposal for a QoS-aware
middleware for adaptive multimedia data transfer. ECOOP
2001 Workshop Reader (to appear in Springer LNCS 2323),
2002.

[5] R. Gordon and S. Talley. Essential JMF - Java Media
Framework. Prentice Hall, 1999.

[6] JavaSoft. Java Virtual Machine Profiler Interface (JVMPI).
http://java.sun.com/j2se/1.3/docs/guide/jvmpi/jvmpi.html.

[7] S. K. Kasera, J. F. Kurose, and D. F. Towsley. Scalable re-
liable multicast using multiple multicast groups. In Mea-
surement and Modeling of Computer Systems, pages 64–74,
1997.

[8] OMG. Trading Object Service Specification Version 1.0,
May 2000. OMG document number: formal/00-06-27.

3ORBacus is available from IONA Technologies. URL:
http://www.ooc.com/

4Available under the URL http://www.openorb.org/.

[9] P. Reiher, R. Guy, M. Yarvis, and A. Rudenko. Automated
planning for open architectures. In Proceedings of Ope-
nArch 2000, Mar. 2000.

[10] C. Rodrigues, J. Loyall, R. E. Schantz, and D. A. Karr. Con-
trolling quality-of-service in a distributed video application
by an adaptive middleware framework. In Proceedings of
ACM Multimedia 2001.

[11] R. Schnatz, J. Loyall, M. Atighetchi, and P. Pal. Packag-
ing Quality of Service Control Behaviors for Reuse. Sub-
mitted to the 5th IEEE International Symposium on Object-
Oriented Real-time distributed Computing, ISORC 2002.
BBN Technologies.

[12] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacob-
son. RTP: A Transport Protocol for Real-Time Applications
(RFC 1889), Jan. 1996.

[13] D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS: A
Toolkit for Building and Dynamically Deploying Network
Protocols. In Proceedings IEEE OPENARCH’98, San Fran-
cisco, CA, Apr. 1998.

Proceedings of the Fourth Annual International Workshop on Active Middleware Services (AMS’02)
0-7695-1721-8/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

